Measurement as Absorption of Feynman Trajectories: Collapse of the Wave Function Can Be Avoided
نویسندگان
چکیده
We define a measuring device (detector) of the coordinate of quantum particle as an absorbing wall that cuts off the particle's wave function. The wave function in the presence of such detector vanishes on the detector. The trace the absorbed particles leave on the detector is identifies as the absorption current density on the detector. This density is calculated from the solution of Schrödinger's equation with a reflecting boundary at the detector. This current density is not the usual Schrödinger current density. We define the probability distribution of the time of arrival to a detector in terms of the absorption current density. We define coordinate measurement by an absorbing wall in terms of 4 postulates. We postulate, among others, that a quantum particle has a trajectory. In the resulting theory the quantum mechanical collapse of the wave function is replaced with the usual collapse of the probability distribution after observation. Two examples are presented, that of the slit experiment and the slit experiment with absorbing boundaries to measure time of arrival. A calculation is given of the two dimensional probability density function of a free particle from the measurement of the absorption current on two planes.
منابع مشابه
Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملLocalizing of a Four-Level Atom via Absorption Spectrum
We propose a scheme for localizing an atom in a four-level configuration inside a classical standing wave field, conditioned upon the measurement of frequency of a weak probe field. In the classical standing wave field, the interaction between the atom and the field is position dependent due to the Rabi-frequency of the driving field. Hence, as the absorption frequency of the probe field is mea...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملThe Effect of Local Damage on Energy Absorption of Steel Frame Buildings During Earthquake
Progressive collapse is a kind of failure in which whole or large part of a structure collapse when a local damage occurs and distributes to other parts. Many researchers focus on the column removal analysis and study of the structure behavior under effect of gravity loads, so these investigations are mostly carried out on the tall building. Earthquake inspections indicate structural element ca...
متن کاملConsistent Resolution of Some Relativistic Quantum Paradoxes
A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm’s formulation of Einstein-Podolsky-Rosen, and Hardy’s paradox. It is argued that wave function collapse is not needed for introducing probabilities into r...
متن کامل